Fast adaptation and Ca2+ sensitivity of the mechanotransducer require myosin-XVa in inner but not outer cochlear hair cells.
نویسندگان
چکیده
In inner ear hair cells, activation of mechanotransduction channels is followed by extremely rapid deactivation that depends on the influx of Ca(2+) through these channels. Although the molecular mechanisms of this "fast" adaptation are largely unknown, the predominant models assume Ca(2+) sensitivity as an intrinsic property of yet unidentified mechanotransduction channels. Here, we examined mechanotransduction in the hair cells of young postnatal shaker 2 mice (Myo15(sh2/sh2)). These mice have no functional myosin-XVa, which is critical for normal growth of mechanosensory stereocilia of hair cells. Although stereocilia of both inner and outer hair cells of Myo15(sh2/sh2) mice lack myosin-XVa and are abnormally short, these cells have dramatically different hair bundle morphology. Myo15(sh2/sh2) outer hair cells retain a staircase arrangement of the abnormally short stereocilia and prominent tip links. Myo15(sh2/sh2) inner hair cells do not have obliquely oriented tip links, and their mechanosensitivity is mediated exclusively by "top-to-top" links between equally short stereocilia. In both inner and outer hair cells of Myo15(sh2/sh2) mice, we found mechanotransduction responses with a normal "wild-type" amplitude and speed of activation. Surprisingly, only outer hair cells exhibit fast adaptation and sensitivity to extracellular Ca(2+). In Myo15(sh2/sh2) inner hair cells, fast adaptation is disrupted and the transduction current is insensitive to extracellular Ca(2+). We conclude that the Ca(2+) sensitivity of the mechanotransduction channels and the fast adaptation require a structural environment that is dependent on myosin-XVa and is disrupted in Myo15(sh2/sh2) inner hair cells, but not in Myo15(sh2/sh2) outer hair cells.
منابع مشابه
The concentrations of calcium buffering proteins in mammalian cochlear hair cells.
Calcium buffers are important for shaping and localizing cytoplasmic Ca2+ transients in neurons. We measured the concentrations of the four main calcium-buffering proteins (calbindin-D28k, calretinin, parvalbumin-alpha, and parvalbumin-beta) in rat cochlear hair cells in which Ca2+ signaling is a central element of fast transduction and synaptic transmission. The proteins were quantified by cal...
متن کاملMyosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle.
Mutations of the gene encoding unconventional myosin XVa are associated with sensorineural deafness in humans (DFNB3) and shaker (Myo15sh2) mice. In deaf Myo15sh2/sh2 mice, stereocilia are short, nearly equal in length, and lack myosin XVa immunoreactivity. We previously reported that myosin XVa mRNA and protein are expressed in cochlear hair cells. We now show that in the mouse, rat, and guine...
متن کاملCochlear amplification, outer hair cells and prestin.
Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has probably co-evolved with a novel hair cell type, ...
متن کاملThe transduction channel filter in auditory hair cells.
In the first step in auditory transduction, sound-induced vibrations of the stereociliary bundles on the sensory hair cells are converted into electrical signals by opening of mechanotransducer channels. Faithful transduction and hence auditory performance will be limited by the kinetic properties of these channels. We have measured the time course of mechanotransducer currents in turtle and ra...
متن کاملMutant analysis reveals whirlin as a dynamic organizer in the growing hair cell stereocilium.
Little is known of the molecular processes that lead to the growth of stereocilia on the surface of hair cells in the inner ear. The PDZ protein whirlin is known, by virtue of the whirler mutation, to be involved in the process of stereocilia elongation and actin polymerization in the sensory hair cells of mammals. We have investigated the function of whirlin and its putative interacting partne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 13 شماره
صفحات -
تاریخ انتشار 2009